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Abstract. The Schwartz inequality is used to obtain some generalized uncertainty relations among
higher-order moments of the position and momentum operators.

It is well known that one essential feature of quantum mechanics lies in the commutation
relation [1]

[q̂, p̂] = ih̄ (1)

whereq̂ andp̂ are the self-adjoint position and momentum operators respectively, and ¯h = h
2π

whereh is the Planck constant. Any pair of Hermitian operators(Â, B̂) satisfies the Schwartz
inequality

〈Â2〉〈B̂2〉 > |〈 12{Â, B̂}+〉|2 + |〈 12[Â, B̂]−〉|2 (2)

where the average is taken with respect to a state|ψ〉. Here{ }+ and [ ]− stand for the anti-
commutator and the commutator, respectively. The inequality in (2) becomes the equality for
the states for which

Â|ψ〉 = λB̂|ψ〉 (3)

whereλ is a constant. Since

1q̂ ≡ q̂ − 〈q̂〉 1p̂ ≡ p̂ − 〈p̂〉 (4)

satisfy the same commutation relation (1), we have forÂ = 1q̂ andB̂ = 1p̂, the familiar
Robertson–Schrödinger uncertainty relation [2]

det

∣∣∣∣ 〈(1q̂)2〉 〈 12{1q̂,1p̂}+〉
〈 12{1q̂,1p̂}+〉 〈(1p̂)2〉

∣∣∣∣ > h̄2

4
. (5)

As 〈 12{1q̂,1p̂}+〉 has a continuous spectrum from−∞ to +∞, we arrive at the weaker
Heisenberg uncertainty relation [3]

〈(1q̂)2〉〈(1p̂)2〉 > h̄2

4
. (6)

In this letter, we present a class of uncertainty relations among some higher-order moments
of q̂ andp̂ which follow from the Schwartz inequality.

Defining the operator

N̂ ≡ iq̂p̂ (7)
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it is easily verified using (1) that

[N̂, q̂] = q̂ [p̂, N̂ ] = p̂. (8)

A simple induction yields the relations

p̂nq̂n = (−ih̄)n(N̂ − n + 1)n = (X̂ − a)(X̂ − 3a) . . . [X̂ − (2n− 1)a]

q̂np̂n = (−ih̄)n(N̂ + 1)n = (X̂ + a)(X̂ + 3a) . . . [X̂ + (2n− 1)a]
(9)

where(x)n = x(x + 1) . . . (x + n − 1), n = positive integers, stands for the Pochhammer
symbol,a = 1

2ih̄, and the operator

X̂ ≡ p̂q̂ + q̂p̂

2
= −i(N̂ + 1

2)h̄. (10)

SinceX̂ has a continuous spectrum from−∞ to +∞, it follows that

|〈X̂m〉|2 > 0 for any integerm. (11)

Consequently, we find that

|〈 12{q̂n, p̂n}+〉|2 = |〈 12{(X̂ + a)(X̂ + 3a) . . . (X̂ + (2n− 1)a)

+(X̂ − a)(X̂ − 3a) . . . (X̂ − (2n− 1)a}〉|2

>


(
h̄

2

)2n

{1× 3× 5× · · · (2n− 1)}2 for n even

0 for n odd.
(12)

Similarly,

|〈 12[q̂n, p̂n]−〉|2 >

(
h̄

2

)2n

{1× 3× 5× · · · (2n− 1)}2 for n odd

0 for n even.
(13)

Thus, the Schwartz inequality gives (for alln)

〈q̂2n〉〈p̂2n〉 >
(
h̄

2

)2n

{(2n− 1)!!}2 (14)

where(2n− 1)!! = 1× 3× 5× · · · × (2n− 1). We recognize that forn = 1, 2 (14) gives

〈q̂2〉〈p̂2〉 > h̄2

4
〈q̂4〉〈p̂4〉 > 9h̄4

16
. (15)

Equation (15) has recently been shown to follow fromsp(2R) invariance [4]. sp(2R), the
symplectic group in two dimensions, is the group of all linear canonical transformations that
leaves the basic commutation relation (1) invariant. Since (14) holds for(1q̂) and(1p̂), we
get

〈(1q̂)2n〉〈(1p̂)2n〉 >
(
h̄

2

)2n

{(2n− 1)!!}2. (16)

Equation (16) reveals that the higher-order moments are progressively weaker correlated,
in view of the higher powers in ¯h.

With the advent of new techniques in quantum optics (see [5, 6] for instance), it should
be possible to test these higher-order uncertainty relations in experiments. They will provide
further evidence for the validity of quantum theory.

The article of Professor E C GSudarshan started my interest in the subject and I thank him for
discussions. I thank Mr Seetharaman Santhanam for typing this report.
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