Higher-order uncertainty relations

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2000 J. Phys. A: Math. Gen. 33 L83
(http://iopscience.iop.org/0305-4470/33/8/103)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.124
The article was downloaded on 02/06/2010 at 08:46

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Higher-order uncertainty relations

Thalanayar S Santhanam
Department of Physics, Parks College of Engineering and Aviation, Saint Louis University, St Louis, MO 63103, USA
E-mail: santhap3@slu.edu
Received 16 December 1999

Abstract. The Schwartz inequality is used to obtain some generalized uncertainty relations among higher-order moments of the position and momentum operators.

It is well known that one essential feature of quantum mechanics lies in the commutation relation [1]

$$
\begin{equation*}
[\hat{q}, \hat{p}]=\mathrm{i} \hbar \tag{1}
\end{equation*}
$$

where \hat{q} and \hat{p} are the self-adjoint position and momentum operators respectively, and $\hbar=\frac{h}{2 \pi}$ where h is the Planck constant. Any pair of Hermitian operators (\hat{A}, \hat{B}) satisfies the Schwartz inequality

$$
\begin{equation*}
\left\langle\hat{A}^{2}\right\rangle\left\langle\hat{B}^{2}\right\rangle \geqslant\left|\left\langle\frac{1}{2}\{\hat{A}, \hat{B}\}_{+}\right\rangle\right|^{2}+\left|\left\langle\frac{1}{2}[\hat{A}, \hat{B}]_{-}\right\rangle\right|^{2} \tag{2}
\end{equation*}
$$

where the average is taken with respect to a state $|\psi\rangle$. Here $\left\}_{+}\right.$and []- stand for the anticommutator and the commutator, respectively. The inequality in (2) becomes the equality for the states for which

$$
\begin{equation*}
\hat{A}|\psi\rangle=\lambda \hat{B}|\psi\rangle \tag{3}
\end{equation*}
$$

where λ is a constant. Since

$$
\begin{equation*}
\Delta \hat{q} \equiv \hat{q}-\langle\hat{q}\rangle \quad \Delta \hat{p} \equiv \hat{p}-\langle\hat{p}\rangle \tag{4}
\end{equation*}
$$

satisfy the same commutation relation (1), we have for $\hat{A}=\Delta \hat{q}$ and $\hat{B}=\Delta \hat{p}$, the familiar Robertson-Schrödinger uncertainty relation [2]

$$
\operatorname{det}\left|\begin{array}{cc}
\left\langle(\Delta \hat{q})^{2}\right\rangle & \left\langle\frac{1}{2}\{\Delta \hat{q}, \Delta \hat{p}\}_{+}\right\rangle \tag{5}\\
\left\langle\frac{1}{2}\{\Delta \hat{q}, \Delta \hat{p}\}_{+}\right\rangle & \left\langle(\Delta \hat{p})^{2}\right\rangle
\end{array}\right| \geqslant \frac{\hbar^{2}}{4} .
$$

As $\left\langle\frac{1}{2}\{\Delta \hat{q}, \Delta \hat{p}\}_{+}\right\rangle$has a continuous spectrum from $-\infty$ to $+\infty$, we arrive at the weaker Heisenberg uncertainty relation [3]

$$
\begin{equation*}
\left\langle(\Delta \hat{q})^{2}\right\rangle\left\langle(\Delta \hat{p})^{2}\right\rangle \geqslant \frac{\hbar^{2}}{4} \tag{6}
\end{equation*}
$$

In this letter, we present a class of uncertainty relations among some higher-order moments of \hat{q} and \hat{p} which follow from the Schwartz inequality.

Defining the operator

$$
\begin{equation*}
\hat{N} \equiv \mathrm{i} \hat{q} \hat{p} \tag{7}
\end{equation*}
$$

it is easily verified using (1) that

$$
\begin{equation*}
[\hat{N}, \hat{q}]=\hat{q} \quad[\hat{p}, \hat{N}]=\hat{p} \tag{8}
\end{equation*}
$$

A simple induction yields the relations

$$
\begin{align*}
& \hat{p}^{n} \hat{q}^{n}=(-\mathrm{i} \hbar)^{n}(\hat{N}-n+1)_{n}=(\hat{X}-a)(\hat{X}-3 a) \ldots[\hat{X}-(2 n-1) a] \\
& \hat{q}^{n} \hat{p}^{n}=(-\mathrm{i} \hbar)^{n}(\hat{N}+1)_{n}=(\hat{X}+a)(\hat{X}+3 a) \ldots[\hat{X}+(2 n-1) a] \tag{9}
\end{align*}
$$

where $(x)_{n}=x(x+1) \ldots(x+n-1), n=$ positive integers, stands for the Pochhammer symbol, $a=\frac{1}{2} \mathrm{i} \hbar$, and the operator

$$
\begin{equation*}
\hat{X} \equiv \frac{\hat{p} \hat{q}+\hat{q} \hat{p}}{2}=-\mathrm{i}\left(\hat{N}+\frac{1}{2}\right) \hbar \tag{10}
\end{equation*}
$$

Since \hat{X} has a continuous spectrum from $-\infty$ to $+\infty$, it follows that

$$
\begin{equation*}
\left|\left\langle\hat{X}^{m}\right\rangle\right|^{2} \geqslant 0 \quad \text { for any integer } m . \tag{11}
\end{equation*}
$$

Consequently, we find that

$$
\begin{align*}
\left|\left\langle\frac{1}{2}\left\{\hat{q}^{n}, \hat{p}^{n}\right\}_{+}\right\rangle\right|^{2} & =\left\lvert\,\left\langle\frac{1}{2}\{(\hat{X}+a)(\hat{X}+3 a) \ldots(\hat{X}+(2 n-1) a)\right.\right. \\
& +(\hat{X}-a)(\hat{X}-3 a) \ldots(\hat{X}-(2 n-1) a\}\rangle\left.\right|^{2} \\
\geqslant & \begin{cases}\left(\frac{\hbar}{2}\right)^{2 n}\{1 \times 3 \times 5 \times \cdots(2 n-1)\}^{2} & \text { for } n \text { even } \\
0 & \text { for } n \text { odd. }\end{cases} \tag{12}
\end{align*}
$$

Similarly,
$\left|\left\langle\frac{1}{2}\left[\hat{q}^{n}, \hat{p}^{n}\right]_{-}\right\rangle\right|^{2} \geqslant \begin{cases}\left(\frac{\hbar}{2}\right)^{2 n}\{1 \times 3 \times 5 \times \cdots(2 n-1)\}^{2} & \text { for } n \text { odd } \\ 0 & \text { for } n \text { even. }\end{cases}$
Thus, the Schwartz inequality gives (for all n)

$$
\begin{equation*}
\left\langle\hat{q}^{2 n}\right\rangle\left\langle\hat{p}^{2 n}\right\rangle \geqslant\left(\frac{\hbar}{2}\right)^{2 n}\{(2 n-1)!!\}^{2} \tag{14}
\end{equation*}
$$

where $(2 n-1)!!=1 \times 3 \times 5 \times \cdots \times(2 n-1)$. We recognize that for $n=1,2(14)$ gives

$$
\begin{equation*}
\left\langle\hat{q}^{2}\right\rangle\left\langle\hat{p}^{2}\right\rangle \geqslant \frac{\hbar^{2}}{4} \quad\left\langle\hat{q}^{4}\right\rangle\left\langle\hat{p}^{4}\right\rangle \geqslant \frac{9 \hbar^{4}}{16} . \tag{15}
\end{equation*}
$$

Equation (15) has recently been shown to follow from $s p(2 R)$ invariance [4]. $s p(2 R)$, the symplectic group in two dimensions, is the group of all linear canonical transformations that leaves the basic commutation relation (1) invariant. Since (14) holds for ($\Delta \hat{q}$) and ($\Delta \hat{p}$), we get

$$
\begin{equation*}
\left\langle(\Delta \hat{q})^{2 n}\right\rangle\left\langle(\Delta \hat{p})^{2 n}\right\rangle \geqslant\left(\frac{\hbar}{2}\right)^{2 n}\{(2 n-1)!!\}^{2} \tag{16}
\end{equation*}
$$

Equation (16) reveals that the higher-order moments are progressively weaker correlated, in view of the higher powers in \hbar.

With the advent of new techniques in quantum optics (see [5,6] for instance), it should be possible to test these higher-order uncertainty relations in experiments. They will provide further evidence for the validity of quantum theory.

The article of Professor E C G Sudarshan started my interest in the subject and I thank him for discussions. I thank Mr Seetharaman Santhanam for typing this report.

References

[1] Dirac P A M 1967 Principles of Quantum Mechanics (New York: Oxford University Press)
[2] Robertson H R 1930 Phys. Rev. 35667
Schrödinger E 1930 Berg. Kgl. Akad. Wiss. 296
[3] Heisenberg W 1927 Z. Phys. 43122
[4] Sudarshan E C G 1995 Selected Topics in Mathematical Physics Professor Vasudevan Memorial volume, ed R Sridhar et al (India: Allied) p 294
[5] Leonhardt U 1997 Measuring the Quantum State of Light (Cambridge: Cambridge University Press)
[6] Bandjaballah C 1995 Introduction to Photon Communication (Berlin: Springer)

